因此其实屏幕上的像素并不是同时发光的,但由于人眼有视觉暂留的特性,所以还是可以看到一幅完整的图像。 显示器扫描的顺序如下图,从0点开始往X轴方向扫描,完成一行后往Y轴方向移动,进行第二行的扫描。 正因为这种扫描方式,屏幕的坐标系就如同上图一样,以左上角为原点,X轴向右,Y轴向下。这与平面几何坐标系正好上下颠倒。
当我们把图像储存为点阵格式的时候,Photoshop就按照上面的顺序,一个接一个地去记录这幅图像中所有的像素的颜色。从而储存了图像。 当在Photoshop中打开一幅点阵图像的时候,也是按照上面的顺序逐个提取像素信息并显示在屏幕上。 Photoshop的信息调板会显示当前鼠标在图像中的XY坐标,如下图鼠标的热点正处在这幅图像横方向第130个,竖方向第35个像素处。 所谓鼠标热点是指鼠标光标中起定位作用的那一点,不同的光标热点位置也不一样。下图的热点是在箭头顶部的尖角处。
了解了点阵图像大小的区别后,我们知道点阵图像幅面越大,像素越多,记录的信息就越丰富。 但是如果只有小幅的图片,能不能放大呢?放大的效果以后比起真正的大图来如何呢?下面我们来做一个实验。
发现图像变得模糊不清了,原先可以看到的一些细节(如左手的手指缝)丢失了。这是为什么呢? 首先我们来模拟一下第一次缩小的过程,假设我们要将一幅10x6个像素组成的图像,缩小为5x3,以下是示意图,每个灰色方块代表1像素。如下左图。当缩小指令发出后,Photoshop等距离地抽取像素并丢弃,如下中图。 然后再将剩余的像素拼合起来,形成缩小后的图案,如下右图。
在第一次缩小以后,像素从9万降到了2.26万,这其中丢弃了6.74万个像素信息。然后又将图像扩大到400×225像素,虽然像素总量和原先一样是9万, 但在第一次转换中丢弃的6.74万像素信息却是找不回来的。Photoshop只能采用插值算法去弥补这6.74万像素。 所谓插值算法,就好比猜测,凭空去“捏造”那些并不存在的像素。
可以想象,用这样方式“捏造”出来的像素,和真正原先的像素肯定存在误差甚至是很大的误差。 比如左手的手指缝,原先可以很清楚地看到有三道深色的线,如下左图。
失去了手指缝的分界,整个手看起来就变得模糊不清,图像失真了。这就是为何将小幅点阵图像扩大后,图像会变得模糊的原因。 在今后实际的操作中,一般情况下不要将点阵图放大制作。 |